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ABSTRACT

We consider the problem of setting approximate confidence intervals for a single parameter 4 in
a multiparameter family. The standard approximate intervals based on maximum likelihood
theory, 6 + z(®), can be quite misleading so, in practice, tricks based on transformations,
bias, corrections, etc., are often used to improve their accuracy. The bootstrap confidence
intervals discussed in this paper automatically incorporate such tricks without requiring the
statistician to think them through for each new application, at the price of a considerable
increase in computational effort. In addition to parametric families, bootstrap intervals are

also developed for nonparametric situations.
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Better Bootstrap Confidence Intervals

Bradley Efron

1. Introduction.

This paper concerns setting approximate confidence intervals for a real-
valued parameter 6 , in a multi-parameter family. The nonparametric case, where
the number of nuisance parameters if infinite, is also considered. The word
"approximate" is important because in only a few special situations can exact
confidence intervals be constructed. Table 1 shows one such situation: the data
(yl,yz) is bivariate normal with unknown mean vector (nl,nz) , covariance matrix
the identity; the parameters of interest are 6 = n2/n1 , and also ¢ = 1/6.
Fieller's construction (1954) gives central 90% interval (5% error in each tail)
of [.29,.76] for O , having observed y = (8,4). The corresponding interval

~

for ¢ = 1/6 is the obvious mapping ¢ « [1/.76,1/.29].

for 6 (R/L) for ¢ (R/L)

Exact Interval [.29,.76] (1.21) [1.32,3.50] (2.20)
Standard Approximation (1.1) [.27,.73] (1.00) [1.08,2.92] (1.00)

MLE §=.5 $ =2

Table 1. Central 90% confidence intervals for 68 = nz/n1 and for ¢ = 1/9,
having observed (yl,yz) = (8,4) from a bivariate normal distribution

y ~ NZ(D’Z)‘ The exact intervals are based on Fieller's construction.
R/L = ratio of right side of interval, measured from the MLE, to the left

side. The exact intervals are markedly asymmetric.

Table 1 also shows the standard approximate intervals

N 2 (l-a)]

8 ¢ [6+oz(a), 9+0z , (1.1)

~

where 6 is the maximum likelihood estimate (MLE) of 0, G is an estimate of



its standard deviation, often based on derivatives of the log likelihood function,

(o)

and z is the 100°a percentile point of a standard normal variate. In Table
1, &= .05, and z(a) = _z(l-a) = -1,645,

The standard intervals (1.1) are extremely useful in statistical practice be-
cause they can be applied in an automatic way to almost any parametric situation.
However they can be far from perfect, as the results for ¢ show. Not only is
the standard interval for ¢ quite different from the exact interval, it is not
even éhe obvious transformation [1/.73,1/.27] of the standard interval for 6.

Approximate confidence intervals based on bootstrap computations were in-
troduced by the author (1981,1982). Like the standard intervals, these can be
applied automatically to almost any situation, though at greater computational
expense than (1.1). Unlike (1.1), the bootstrap intervals transform correctly,
so for example the interval for ¢ = 1/6 1is obtained by inverting the endpoints
of the interval for 6. They also tend to be more accurate than the standard
intervals. In the situation of Table 1, the bootstrap intervals agree with the
exact intervals to three decimal places. Efron (1984) shows that this is no
accident; there is a wide class of problems for which the bootstrap intervals
are an order of magnitude more accurate than the standard intervals.

In those problems where exact confidence limits exist, the endpoints are

typically of the form

RO
5 + G(Z(O‘) + —r:/-_——-+ I:‘ +) . (1.2)
n

where n 1is the sample size. The standard intervals (1.1) are first order correct

A~ (a)

in the sense that the term 6+0z asymptotically dominates (1.2). However the

second order term aAéa)//E can have a major effect in small sample situations.



It is this term which causes the asymmetry of the exact intervals about the MLE,
as seen in Table 1. As a point of comparison, the student-t effect is of third
order magnitude, comparable to 835“)/n in (1.2). The bootstrap method des-

cribed in Efron (1984) was shown to be second order correct in a certain class

of problems, automatically producing intervals of correct second order asympto-
Ale)
@, n_ +o0.).
/n

This paper describes an improved bootstrap method which is second order

tic form © + o(z

correct in a wider class of problems. This wider class includes all the familiar
parametric examples where there are no nuisance parameters, and where the data has
been reduced to a one-dimensional summary statistic, with asymptotic properties
of the usual MLE form. (Section 4).

The bootstrap methods described here apply to either parametric or non-
parametric situations. We will begin with the simplest parametric situations
and work toward the full nonparametric case near the middle of the paper. In
order to get the main ideas across, some important technical points are deferred

to the later Sections.

2. Bootstrap Confidence Intervals.

This section describes the construction of improved bootstrap confidence

intervals. They are obtained by a simple modification of the bias-corrected

bootstrap method, (BC Method), introduced in Efron (1981,1982). First we

describe the BC method.

Let y represent all the available data, and suppose that y is drawn

~

from an unknown probability distribution P , .belonging to a known family of

distributions P. A familiar example is where y = (xl,xz,...,xn) , the X5

being obtained by independent identical draws (i.i.d.} from a distribution Fn

~

which belongs to a family F indexed by an unknown parameter vector .



There is a real-valued parameter 6 = t(P) for which we have a point esti-
mate, say 6 = s(y) , but further desire a confidence interval. All bootstrap

methods begin as follows: Having observed y , we first estimate P by some

~

~ ~

estimation rule P = P(Z)‘ In the i.i.d. case for instance, we might estimate

n by its MLE ﬁ , and then take P = Fg , the exponent indicating n indepen-
dent draws of Xy from Fﬁ' In the nonparametric situation, where

y = (xl,xz,...,xn) but the i.i.d. observations X; can come from any distribu-
tion F on their sample space, we would usually take P=f" , where F is the

empirical distribution putting mass 1/n on each observed value X; . This is

the original context in which the bootstrap was suggested. However in most of

this paper, except for Sections 6 and 7, we will be working with the parametric

bootstrap.

The BC method produces an approximate 1-2a central confidence interval
for 6 by resampling from P

* *

» Yp are drawn from P.

*
(i) Independent bootstrap data sets Y10 Yoo -

(The number of resamples for confidence interval construction tends to be large,
on the order of B = 1000, see Section 8. We will assume in what follows that
B is very large, so that fluctuations in the bootstrap intervals due to small
B are eliminated. In parametric situations B can often be made essentially
infinite by using standard parametric expansions, instead of Monte Carlo samp-
ling, to construct the bootstrap distribution, see Efron (1984, 1984A).)

(ii) For each y;, b=1, 2, ..., B, the bootstrap estimate é; = S(Z;
is calculated.

Ak
(iii) The bootstrap cumulative distribution function (cdf) of the ©

values is constructed, say

G(s) = —2 @< <o, (2.1)



(iv) The quantity

z, = a7 1(68)) (2.2)

1 2

_L
is evaluated, ®(z) = (2m) % f% 72 ds , the standard normal cdf.

=00

(v) Finally, the BC interval is defined to be
8 < 167 @22+ @), Gl e (22021, (2.3)

where z(u) = Q-l(a) as before.

Nk

Notice that if 6(8) = .5 , that is if half of the Gb values are less than
the actual estimate 6 , then Zodis 0 , and the BC interval (2.3) is simply
8 = [a_l(a), a-l(l-a)]. In other words, we use the obvious percentiles of the
bootstrap distribution of 6* to form an approximate confidence interval for 6.
If Zq # 0 , definition (2.3) makes a bias correction, often a quite large one,
as motivated in Section 10.7 of Efron (1982).

For the situation of Table 1, the BC method produces intervals agreeing very
closely with the exact Fieller solution. Table 2 shows a less successful applica-
tion, pointed out by N. Schenker (1983). The data is the single observation
y ~ exig , and a confidence interval is desired for the scale parameter 6. In
this case the BC interval based on 6 = y/19 1is a definite improvement over the
standard interval (1.1), but goes only about half as far as it should toward
achieving the asymmetry of the exact interval, ©6¢ 6[19/x§51_a),,19/xiéa)].

Why does the BC method work better in Table 1 than in Table 2? The main
result of Efron (1984) is the following, which applies to Table 1: suppose y
is multivariate normal y ~ Nk(g,g), 6 = t(g) , and we estimate 6 by its MLE
6 = t(z). Then the BC method is second order correct, as defined in Section 1.

More generally, if there exists multivariate transformations g and h such

that g(y) ~ Nk(h(n),z) , then the BC interval for © based on the MLE 6 is



1. Exact 6[.631,1.88] R/L = 2.38
2. BC 6{.580,1.69] R/L = 1.64
3. Standard (1.1) 6[.466,1.53] R/L = 1.00
4. BC |40 61.630,1.88] R/L = 2.37
5. Nonparametric BCa 6[.640,1.68] R/L = 1.88

Table 2. Central 90% confidence intervals for 6, having observed
y ~ 8xig. The BC method, based on the MLE é = y/19, (line 2), is only

a partial improvement over the standard intervals., The improved boot-
strap method described in this section (line 4) agrees almost perfectly
with the exact interval. Its nonparametric version (line 5) is dis-
cussed in Section 6.

still second order correct. This last result does not require the statistician
to know the normalizing transformations g and h , only that they exist (because
the BC interval (2.3) is invariant under all such transformations, when é is the
MLE) .

The situation of Table 2 is vy -~ exig , or equivalently 8 ~ e(xig/lg). The
results of Efron (1982A) show that there is a single monotone transformation g

~ ~

such that, to a good approximation, ¢ = g(8), ¢

it

g(6) satisfy

b =0+ 0,0z (Z ~ N(0,1)) (2.4)
and
g, =1+ a¢ . (2.5)
¢
The constants in (2.4), (2.5) are =z, = .1082, a = .,1077. See Section 9, and Remark

0

E, Section 10. For general situations of form (2.4), (2.5), we will assume that
¢ > -1/a if a >0, so G¢ >0, and likewise ¢ < -1/a if a < 0. The constant
a will typically be in the range |a| < .2 as will zq- [Please note the
Corrigenda to Efron (1982A).]

Notice that if a were 0 in (2,5), then (2.4) would be a normal transla-

tion family. In this case the obvious confidence interval



¢ ¢ [¢+zo+z(a), ¢+zo+z(1—a)] would map into a correct confidence interval for 6,

via the inverse transformation 6 = g_l

(¢). As a matter of fact the resulting
interval for 6 equals the BC interval. This is the rationale for definition
(2.3). The advantage of (2.3) is that the statistician need not know the mapping
g.

The improved bootstrap method of this paper consists of a recipe for handling
the situation a # 0. Suppose 6 is a real-valued statistic whose density fe

depends only on a real-valued parameter © , and suppose also that there exists

a monotone mapping g such that $ = g(é), o = g(8) satisfy (2.4), (2.5).

Lemma 1. Under the conditions just stated, the correct confidence interval

for 6 , based on 6 , is

o ¢ (G 1(a(zlal), G 1(a(z[1-al)] , (2.6)
where
(20+z(°°))
z[a] =z, + , (2.7)
0 . a(zo+z(a))

and likewise for z[1-0]. (Proof below.)
~ Nk
Here G 1is the (parametric) bootstrap cdf of 6 - fé- If a =0 then
interval (2.6) is the same as (2.3), but if a # 0 , different percentiles of

the bootstrap distribution are employed. We will call (2.6) the BCa interval.

The constant a is discussed further in Sections 3 and 9.

Example: for the situation of Table 2, where z, = .1082, a = L1077 , we

0
calculate z[.05] = -1.210, z[.95] = 2.270 , so &(z[a]) =.1131, ®(z[1l-a]) = .9884.
The bootstrap distribution is 6* ~ 6(Xig/19) , with quantiles 6‘1(.1131)= 6.630,
a_l(.9884) =8 1.877. This gives the BC.1077 interval shown in line 4. [Bartlett
(1953) discusses this same example. The BC/ method can be thought of as a com-

puter-based way to numerically carry out Bartlett's program of improved approxi-

mate confidence intervals without having to do any theoretical calculations.]



The proof of the lemma begins by showing that the BCa interval for ¢ ,
based on ¢ , is correct in a certain obvious sense: notice that (2.4), (2.5)

give
{1+a¢} = {1+apH{1+a(Z-2)} . (2.8)

Taking logarithms puts the problem into standard translation form,

D>
il

T+ W, (2.9)

z = log{1+a$}, z = log{l+a¢}l , and W log{1+a(2—zo)}. This example is discussed
more carefully in Sections 4 and 8 of Efron (1982A), where the possibility of

the bracketed terms in (2.8) being negative is dealt with. Here it will cause

no trouble to assume them positive so that it is permissable to take logarithms.
In fact the transformation to (2.9) is only for motivational purposes. A quicker
but less informative proof of the Lemma is possible working directly on the ¢
scale.

The translation problem (2.9) gives a natural central 1-2a interval for

having observed E s

(1-0) (a)]

L e [C-w , C-w , (2.10)

where w(a) is the 100-0 percentile point for W, Prob{w<w(a)} = q.

We will use the notation 6[a] for the a-level endpoint of a confidence in-

terval for a parameter 6. For example (2.10) says that gla] = E—w(l_a),
z[1l-a] = E—w(a). The interval (2.10) can be transformed back to the ¢ scale by

the inverse mappings $ = (ec—l)/a, ¢ = (eC-l)/a, (Z—zo) = (ew—l)/a. A little
algebraic manipulation shows that the resulting interval for ¢ has a-level

endpoint



(a))

A~

¢la] = ¢ +

(zo+z

on (2.11)
®1-a(zp )

The cdf of $ according to (2.4) is @(%;9-+ zO) , SO the bootstrap cdf of
2 ¢
Ak -1

o . 2 s-¢ . . A
’ Gy » is G, (S) = ®(—+ . This h G
¢ say Gy, 1 ¢( ) (S + 2) is has inverse G,

which shows that aél(é(z[a])) equals (2.11). 1In other words, the BCa interval

() = Broglo™ (@) -z},

for ¢ , based on $ , coincides with the correct interval (2.11), correct meaning
in agreement with the translation problem interval (2.10).

The BCa intervals transform in the obvious way: if $ = g(¢), ¢ = g(9) ,
then the BCa interval endpoints satisfy ¢[a] = g(6{a]) (because each bootstrap
realization $; equals g(gz) , SO that all the percentiles of the two bootstrap
distributions map in the same way. aél(a) = g(a_l(a)).) This verifies Lemma 1:
the transformations g - $ - E and 6 > ¢ >~ T reduce the problem to translation
form (2.9); the inverse transformations of the natural interval (2.10) for ¢

produce the BCa interval (2.6), (2.7).

3. The Acceleration Constant a.

The BCa intervals (2.6), (2.7) require the statistician to calculate the

bootstrap distribution G , and also the two constants z, and a. The bias-

0
correction constant zZq equals ®_1(§(§)) , (2.2), and so can be computed directly
from G. What about a? If we need to know the transformation g leading to
the normalized problem (2.4), (2.5) in which a was defined, then the BCa
method is practically useless. Fortunately there is a simple way to calculate a
without knowledge of g.

Suppose first that 8 has density function fe depending only on the real
parameter © , as in Lemma 1. In this section we will show that a good approxi-

mation for the constant a 1is

SKEW. A(2.)
g & 0=07707 (3.1)

(o]}



where SKEW9=§(X) indicates the skewness of a random variable X, uS(X)/uZ(X)S/2 ,

evaluated at parameter point 6 equals ) , and ie is the score function

ie(e) - g% log £,(8) . (3.2)

Formula (3.1) allows us to calculate a 1in terms of the given density fe , with-
out knowing g. Sections S and 6 discuss the computation of a in families with
nuisance parameters. Section 9 gives a deeper discussion of a , and its rela-
tionship to other quantities of interest.

Example: For the situation 9 - e(xfg/19) in Table 2, standard X2 cal-
culations give SKEW(ée)/6 = [8/(19-36)]1/2 = ,1081 , which is quite close to the
actual value a = .1077 derived in Section 9.

If we make smooth one-to-one transformations $ = g(é), ¢ = h(8) , then

z¢($) = 26(6)/h'(6) , and SKEW(L,) = SKEW(%,). In other words, the right side

¢)

of (3.1) is invariant under all mappings of this type. Suppose that for some

choice of g and h , we can represent the family of distributions of $ as
¢ = ¢ + 04a(2) (Z ~ N(0,1)) , (3.3)

where o¢ and q(Z) are functions of ¢ and z , having at least one and two
derivatives respectively. Situation (3.3) is called a general scaled transforma-

tion family (GSTF) in Efron (1982A).

Lemma 2. The family (3.3) has score function £¢(¢) satisfying

. < 1+0,q(2)
A q''(2) ¢ ] B
o¢£¢(¢) - [z + q,(z)][ D) Sy (z ~ N(0,1)) . (3.4)

Here O, = % and q' and q' are the first two derivatives of q.

10



Before presenting the proof of Lemma 2, we note that it verifies (3.1): in

situation (2.4}, (2.5), where g, = a, q'(2) =1, q"(Z) = 0 , the distributional

¢
relationship (3.4) becomes
o¢z¢($) - (1-azo)[; . 1_220 (22-1)] . (3.5)
Let
!
€0 “T-az_ ’ (3.6)

a quantity discussed in Section 9. From the moments of Z ~ N(0,1) , (3.5) gives

| &

SKEW (2
3

1++5 ¢

3

0 _

€

3.7
0 (1+2¢ S

2
0
/2"

O NN

)

We will see in Section 9 that for the usual repeated sampling situation

L
both a and :z are order of magnitude O(n ) in the sample size n. This

0

means that e, = a-[1+0(m~1)] . (3.6), and that SKEwcie)/6= SKEW(Q¢)/6= al1+0(n™ 1,

(3.7), justifying approximation (3.1). The '"constant" a actually depends on 6 ,
but substituting © = 6 in (3.1) causes errors only at the third order level,
aBga)/n in (1.2), and so doesn't effect the second order properties of the BC,

intervals.

Proof of Lemma 2: Starting from (3.3), the cdf of $ is @(q-l(géga) SO

12
. ~ -7
¢ nas density f¢(¢) = e ¢/(/TF Ty q'(Z¢)) , where Z¢ = q_l(($-¢)/o¢). This
gives log likelihood function
~ 1.2
Z¢(¢) = -3l 10g(Q'(Z¢)) - 108(%) . (3.8)

Lemma 2 follows by differentiating (3.8) with respect to ¢ , and noting that

Z¢ ~ N(0,1) when sampling from (3.3) %

11



Suppose =0 and a >0 in (2.4), (2.5). Having observed ¢ = 0 , and

Zo
noticing 0$ = 1 , the naive interval for ¢ (which is almost the same as the
standard interval (1.1)), is ¢ € [z(a)’z(l—a)]. However if the statistician

checks the situation at the right endpoint z(l'a) , he finds that the hypothe-

sized standard deviation of $ has increased from 1 to 1+az(1-a). This sug-

gests increasing the right endpoint to z(l_a)(1+az(l_a)). Now the hypothesized
.. . (1-0) (1-a) .
standard deviation has further increased to 1l+az (1+az ) , suggesting
a still larger right endpoint, etc. Continuing in this way leads to formula
(2.11). [Improving the standard interval (1.1) by recomputing G at its end-
points is a useful idea. It was brought to my attention by John Tukey, who
pointed out its use by Bartlett (1953), see for instance Bartlett's equation

(17). Tukey's 1949 unpublished talk anticipates many of the same points.]

We will call a the acceleration constant in what follows because of its

effect of constantly changing the natural units of measurement as we move along

the ¢ (or 8) axis. Notice that we can write (2.5) as

[1 (M)O] (3.9)
g, =0 + a .
0 o) o )
0 %
SO
d(c¢/o¢o)
a = —— (3.10)
_¢0
d(z—)
%

for any fixed value of ¢0' This shows that a is the relative change in 0¢
per unit standard deviation change in ¢ , no matter what value ¢ has.
The point ¢0 = 0 is favored in definition (2.5) since we have set 99

equal to the convenient value 1. There is no harm in thinking of 0 as the true

value of ¢ , the value actually governing the distribution of ¢ in (2.4),

12



because in theory we can always choose the transformation g so that this is the
case, and also so that Oy = 1. (See Remark A, Section 10). The restriction
l1+a¢>0 in (2.5) causes no practical trouble for |a| < .2 , since it is then

at least 5 standard deviations to the boundary of the permissable ¢ region.

4. Second Order Correctness of the BCa Intervals.
The standard interval (1.1) is based on taking literally the asymptotic
approximation
8% N, . (4.1)
o}
The BC method assumes that a more general approximation holds,
6)-g(®
E@E®) | Nigp, 4.2)

ON

1
o

o

for some constant z, and monotone transformation g , where gg = [Varg g(6)15_5-

The BC, method relaxes the assumptions one step further, to
6)-g (6 2
£0)-2®) | n(-zy, (1+ag(8))?) 4.3)

o
g

The difference between (4.2) and (4.3) is greater than it seems: the hypo-

thesized ideal transformation g 1in (4.2) has to be both normalizing and variance

stabilizing, while in (4.3), g need by only normalizing. Efron (1982A) shows
that normalization and stabilization are partially antagonistic goals in familiar
fémilies such as the Poisson and the binomial.

It is not surprising that a theory based on (4.3) is usually more accurate
than a theory based on (4.1). In fact applied statisticians make frequent use
of devices like those in (4.3), transformations, bias corrections, and even
acceleration corrections, to improve the performance of approximation (4.1). The
advantage of the BC, method is that it automates these improvements, so that

the statistician doesn't have to think them through anew for each new application.

13



Is it possible to go beyond (4.3), to find still further improvements over
(4.1)? The answer is no,.at least not in terms of second-order asymptotics. The
theorem of this section states that for simple one-parameter problems the BC,
intervals coincide through second order with the exact intervals. In terms of
(1.2), the BCa intervals have the correct second-order asymptotic form

0 + S(Z(“)+Ar(l°‘)//ﬁ ...

~

We consider the simple one-parameter problem 6 - fe . supposing that the

100+ percentile of 6 as a function of © , say §éa) , 1s a continuously increas-

ing function of 6 , for any fixed a. In this case the usual confidence
interval construction gives an exact 1-20 central interval for 6 having ob-

served , say [SEx[a], eEx[l—a]] , where eEx[a] is the value of 6 satis-

6
fyin 6(1‘“) = 6. The exact interval in Table 2 is an example of this construc-
g€ Yy p

tion.

It isn't necessary that 6 be the MLE of 6. 1In (2.4) for instance $ is
not the MLE of ¢. (The BCa method is quite insensitive to small changes in
the form of the estimator, see Remark B, Section 10.) However we will assume

that © behaves asymptotically like the MLE in terms of the orders of magnitude

of its bias, standard deviation, skewness, and kurtosis,

. B, C., D, E
8-6 ~ (Te) —e’ —en ??') . (4 . 4)
yai v/n

~

Here n 1is the sample size upon which the summary statistic 6 1is based;

Be, C De , and Ee are bounded functions of 6 (and of n, which is sup-

e,
pressed in the notation). Then (4.4) says that the bias of é, Be/n , is O(n'l),
L L . -
the standard deviation Ce//ﬁ is 0(n™%) , skewness O(n %) , and kurtosis O(n 1).
Higher cumulants, which are typically of order smaller than O(n'l) , will be

assumed negligible in proving the results which follow. See Hougaard (1982) and

DiCiccio (1984).

14



The asymptotics of this paper are stated relative to the size of the esti-
mated standard error o of 6 , as in (1.2). It is often convenient in what
follows to have o be 0(1). This is easy to accomplish by transforming to

$ = v/n §, ¢ =vn 6, so (4.4) becomes
¢'¢ ~ (B¢;O¢,Y¢’6¢) 1) (4'5)

where B¢ = B¢/J§//H, G¢ = C¢//E’ Y¢ = D¢//E//E’ 6¢ = E¢//E/n. Notice that

. dB
-1 -
B¢ = 0(m %) and B¢ = 7§§-= O(n 1) , etc, We can just assume to begin with

that 6 and © are the rescaled quantities called $ and ¢ above. Then the

following orders of magnitude apply,

1 - -
0(1) om™ o™ om=>?
- — — (4.6)
Oe Ge’Be!’Ye Ge’Be’Ye,se Be’Ye’de

Theorem 1, If 8 has bias Be , Standard error Og » skewness Yg » and
kurtosis 66 satisfying (4.6), then the BCa intervals are second order correct.

The theorem states that eBC [a] , the o-endpoint of the BCa interval, is
asymptotically close to the exactaendpoint,

8 8. [a]

pc [l - Oy
a

_ =om by . (4.7)
o

This isn't true for standard intervals (1.1) or the BC intervals (2.3). The

proof of Theorem 1, which appears in Section 11, makes it clear that all three

of the elements in (4.3), the transformation g , the bias-correction constant

zy » and the acceleration constant a , make necessary corrections of O(n-%)

to the standard intervals based on (4.1).

McCullagh (1984) and Cox (1980) give an interesting approximate confidence

interval for 6 , having a-endpoint

15



(Bko+2k. ) + & z(°‘)2
1) @, B2 on 001

x— ~3/2
/kz 6k,

0 pplal = 6 + (4.8)

Here 6 1is the MLE of 8, if k2(9) = Ee g , the Fisher information, then

A .

A At X}
k2 = k2(6) and k2 = dkz(e)/d6[e=§ ; and kOOl = (Eele)e=§. Formula (4.8) is
based on higher-order asymptotic approximations to the distribution of the MLE.
See also Barndorf-Nielsen (1984).

It can be shown, as indicated in Section 11, that 6 [a] also closely

BC

a

matches (4.8), (eBC [a]—eAPP[a])/G = O(n-l). We see again that the BCa method
a

offers a way to avoid theoretical effort, at the expense of intense computer com-

putations.

5. Multiparameter Problems.

The discussion so far has centered on the simple case 6. f6 , where we
have only a real-valued parameter 6 and a real-valued summary statistic 5 from
which we are trying to construct a confidence interval for 6. We have been able
to show favorable properties of the BCa intervals for the simple case, but of
course the simple case is where we least need a general method like the bootstrap.

This section discusses the more difficult situation where there are nuisance
parameters besides the parameter of interest 6. Section 6 discusses the non-
parametric situation, where the number of nuisance parameters is effectively in-
finite. Because of the inherently simple nature of the bootstrap it will be easy
to extend the BCa method to cover these cases, though we will not be able to
provide as strong a justification for the correctness of the resulting intervals.

Suppose then that the data y comes from a parametric family F of density

~

~

functions fn , where n 1is an unknown vector of parameters, and we want a con-

fidence interval for the real-valued parameter 6 = t(n). In Efron (1984), the

multivariate normal case y ~ Nk(n,I) is examined in detail.
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From y we obtain ﬁ , the MLE of n , and g = t(ﬁ) , the MLE of 6. The

~ ~

BC interval for 6 , (2.3), is obtained as indicated at the beginning of Section

. . . * ok * iid
2: step (i) of the bootstrap algorithm is to sample Y12Yp---Yp ~
A%k

*
eb = t(yb) , etc. However in order to obtain the BCa intervals, we also need

fﬁ , giving

~

to know the appropriate value of a , the acceleration constant. We will find a

by following Stein's (1956) construction, which replaces the multiparameter family

F = {fn} by a least favorable one-parameter family f.

Let Qn be the vector with ith coordinate 5%—-10g fn(y) e} la(y) =0
~ .. i N N

by definition of the MLE n , and let za be the kxk matrix with ijth entry

32

~ ~

§ﬁzsﬁz-log fg(z)ln=ﬁ. Also let z be the gradient vector of g = t(g) eval-
uated at the MLE, 61 = 5%— t(n)[n_ﬁ. The least favorable direction at n = n
;5 o~ 'nen ~ o~
is defined to be
A _ »e _1/\
= (—%ﬁ) vo. (5.1)

Then the least favorable family F is the one-parameter subfamily of F passing

through ﬁ in the direction ﬁ ,

~

F = {fT(X ) = fﬁ+r§(l )} . (5.2)

Using y* to denote a hypothetical data vector from fT is intended to avoid con-

fusion with the actual data vector y which gave n; ﬁ and ﬁ are fixed in

~ ~

(5.2), only T being unknown.

~

Consider the problem of estimating 6(t) = t(A+t{l) having observed y*.,fT.

The Fisher information bound for an unbiased estimate of © in this one-parameter
family evaluated at T = 0 , equals V'(-lﬁ)'ls , which is the same as the cor-

, in the multiparameter

13>

responding bound for estimating © = t(n) , at

> 13

family F. This is Stein's reason for calling least favorable.
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We will use F to calculate an approximate value for the acceleration con-

stant a.,

dlog . _~(y*)
SKEW q+TE >
=0 9T

a = 3 . (5.3)

This is formula (3.1) applied to f , assuming that T=0 (which is the MLE of
T in ? when Z* =Y, the actual data vector).

Formula (5.3) is especially simple in the exponential family case where the
densities fn(z) are of the form

£ = 0LV £y (5.4)

The factor n in the exponent of (5.4) isn't necessary, but is included to agree

with the situation where the data consists of i.i.d. observations

n'x-y(n)

)—51’ )_52. MR ] )fn’

, and y 1is the sufficient vector £ X./n.

each with density e _
~ i=1 -1

Lemma 3. For the exponential family (5.4), formula (5.3) gives

~(3)
1 Y- (0)
a= — (5.5)
6/ (31 (0)%?
where
» 39y
w(J)(o) - = . (5.6)
37’ =0
Proof: We have
dlog fa. _~(y*) . o
o oo ) (5.7)
T=

310g fﬁ+’l‘}:l (X*)
0 aT
fact that SKEW(@'Z*) equals [wcs)(0)/(w(2)(0))3/2]//5 is a standard exercise

SO SKEWT_ equals the skewness of ﬁ'y* for y* . fa. The

~

in exponential family theory. Note: Lemma 3 applies to y - Nk(n,I) , the case
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considered in Efron (1984), and gives a = 0 , which is why the unaccelerated BC
intervals worked well there.
Table 3 relates to the following example:

2
Y~ Ny(mhopl) [o, = 1+a(lInll-8)1 , (5.8)

-~ ~

where we observe y = (8,0,0,0) and wish to set confidence intervals for the

~

parameter 6 = t(n) = [In|[. The case a = 0 amounts to finding a confidence in-
terval for the non-centrality parameter of a noncentral xz distribution, and
can be solved exactly. The theory of Efron (1984) applies to the a = 0 case,

and we see that the BCO interval, i.e. the ordinary BC interval (2.3), well

matches the exact interval.

Exact (R/L) BCa (R/L) (5.3)
a=.10 [6.46, 9.69] (.96) [6.47, 9.70] (.S97) .0984
a= .05 [6.32, 9.57] (.85) [6.34, 9.56] (.84) .0498
a=20 [6.14, 9.47] (.74) [6.19, 9.44] (.75) 0
a=-,05 [5.,92, 9.38] (.65) [6.03, 9.35] (.66)  ~-.0498
a=-.10 [5.62, 9.30] (.56) [5.89, 9.27]1 (.60) -.0984
Table 3. Central 90% confidence intervals for 6 = ||n||, having
observed ||y|| = 8, from the parametric family y ~ N4(n,oi1), with

On = 1+a(||n||-8). The standard interval (1.1) is [6.36,9.64] for
all values of a. The last column shows that (5.3) nearly equals
the constant a in this case. The exact intervals are based on

the non-central XZ distribution.

Table 3 shows the result of varying the constant a from .10 to -,10,
This example has a particularly simple geometry: the sphere Cg = {n:]|n]|=6}
is the set of n vectors having t(n) equal to the MLE value 6 = t(ﬁ) ; the

~ ~

least favorable direction ﬁ is orthogonal to C@ at ﬁ ; the distribution of

6 1is nearly normal (see Table 2 of Efron, 1984), with standard deviation changing
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at rate nearly equal a , as in (3.10). The BCa intervals alter predictably
with a. For instance comparing the upper endpoint at a = .10 with a =0,
notice that (9.70-8.00)/(9.44-8.00) = 1.18 , closely matching the obvious ex-

pansion factor due to acceleration, 1 + .10°+1.654 = 1.17.

We could disguise problem (5.8) by making non-linear transformations
y=8, 1=nhm, (5.9)

in which case the geometry of the BCa intervals might not be obvious from the
form of the parameter 6 = t(h_l(ﬁ)) = Hh_l(ﬁ)|| and the transformed densities
%ﬁ(z). However the BCa method is invariant under such transformations, see
R;mark C, Section 10, so the statistician would automatically get the same inter-
vals as if he knew the normalizing transformations y = g_l(z), n = h_l(ﬁ).

Currently we cannot justify the BCa method as being second order correct
in the multiparameter context of this section, though it seems a likely conjec-
ture that this is so. We know that it is so in the one-parameter case, Section
4, and in the restricted multiparameter case of Efron (1984), where the BCa

and BC methods coincide; and that the BCa method makes a rather obvious cor-

rection to the BC interval in the general multiparameter case.

6. The Nonparametric Case.

This section concerns the nonparametric case where the data y = (xl,...,xn)
consists of i.i.d. observations X4 which may have come from any probability
distribution F on their common sample space X. There is a real-valued para-
meter 6 = t(F) for which we desire an approximate confidence interval. We will
show how the BCa method can be used to provide such an interval based on the

obvious nonparametric estimate 6 = t(ﬁ). Here F 1is the empirical probability

distribution of the sample, putting mass 1/n on each observed value X5 .
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~ Nk
The nonparametric bootstrap cdf G of 8 is generated by following steps
(1), (ii), (iii) at the beginning of Section 2: each bootstrap data set y;
* * * A
equals (xlb’XZb""’xnb) , an i.i.d. sample of size n from F. This gives a

A%k *
bootstrap empirical distribution Fb putting mass 1/n at each Xs and a

‘b 3
Ak Ak
corresponding bootstrap estimate 6b = t(Fb). The observed standard deviation of

the 8; values is the nonparametric bootstrap estimate of standard error for § s
Efron (1979). In this paper we are pursuing the more difficult task of construct-
ing approximate confidence intervals from the bootstrap distribution.

At this point we could use G to form the BC interval (2.3), but for the

BCa interval (2.6) we also need the value of a. We will derive a simple formula

for a , based on Lemma 3. It depends on

t((1-8)F+A8,) -t (F)
U, = lim 5 ., i=1,2,...,n) , (6.1)
A0

the empirical influence function of 6 = t(?). Here Gi is a point mass at x, ,

so U; is the derivative of the estimate 6 with respect to the mass on point
X; . Definition (6.1) assumes that t(F) is smoothly defined for choices of F
near ﬁ , see Section (6.3) of Efron (1982), or Section 5 of Efron (1979). [Note-
n
ZiUi = 0.]

The next section shows that Lemma 3, applied to a family appropriate to the

nonparametric situation, gives the following approximation for the constant a

n 3
I S 6.2)
2°% 052 '
i=1 “i

This is a convenient formula since the Ui can be evaluated easily using finite

difference in definition (6.1).

Example 1: The law school data. Table 4 shows two indices of student

excellence, LSAT and GPA, for each of 15 American law schools, see Section 2.2
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i (LSAT,GPA) U, i (LSAT,GPA) U,
1: (576,3.39) -1.507 9:  (651,3.36) 0.310
2:  (635,3.30) 0.168 10:  (605,3.13)  0.004
3:  (558,2.81) 0.273 11:  (653,3.12) -0.526
4: (578,3.03) 0.004 12:  (575,2.74) -0.091
5: (666,3.44)  0.525 13:  (545,2.76) 0.434
6: (580,3.07) -0.049 14: (572,2.88) 0.125
7:  (555,3.00) -0.100 15:  (594,2.96) -0.048
8:  (661,3.43) 0.477

Table 4. The law school data, and values of the empirical

Influence function for the correlation coefficient p.
of Efron (1982). The Pearson correlation coefficient 0 between LSAT and GPA
equals .776 ; we want a confidence interval for the true correlation p. Table
3 also shows the values of Ui for the statistic 8 , from which formula (6.2)
produces a £ -.0817. B = 100,000 bootstrap replications (about 100 times more

than actually needed, see Section 8) gave 1z, = @’1(.463) = -,0927 , defini-

0
tion (2.2). Taking o = .05 in (2.6), (2.7) resulted in the central 90% BCa
interval [.43,.92] for p. The corresponding bivariate normal interval, based
on Fisher's tamh_l transformation, is [.49,.90]. The standard interval (1.1),
6 + 1.645 0 , using the bootstrap estimate G = .133 , is [.56,.991.

Formula (4.2) is invariant under monotone changes of the parameter of in-
terest. This results in the BCa intervals having correct transformation pro-
perties. Suppose for example that we change parameters from p to
o = glp) = tanh-l(p) , with corresponding nonparametric estimate ¢ = g(a).

The central 90% BCa interval for ¢ based on $ is then the obvious trans-
formation of the interval for ©6 Dbased on 8 , [g(.43),g(.92)] = [.46,1.59].
This compares with Fisher's tanh~! interval [g(.49),g(.93)] = [.54,1.47]

and the standard interval $ + 1.645 G, = [.49,1.59]. The standard interval

¢

is much more reasonable-looking on the t:anh'l scale, as we might expect from
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Fisher's transformation theory. As commented before, a major advant;ge of the
BCa method is that the statistician need not know the correct scale to work on.
In effect the method effectively selects the best (most normal) scale, and then
transforms the interval back to the §ca1e of interest.

Example 2: Mardia, Kent, and Bitty (1979), pages 3, and 234, give 5 test
scores for each of n = 88 students. The principal eigenvector of the 5Xx5
sample covariance matrix accounts for § = .619 of the total variation, i.e.,
.619 = (largest eigenvalue)/(sum of eigenvalues). Suppose we want a central 90%
confidence interval for the corresponding population parameter.

Table 5 shows the BCa intervals based on B = 1000 bootstrap replications:
zy = .095, a = .0194 (6.2), so the BCa interval is nearly the same as the BC
interval in this case. Both are nearly the same as the standard interval (1.1).
(Here we have used the bootstrap standard error estimate .046 rather than the
asymptotic normal-theory estimate .041.) In this case the standard interval is
quite acceptable, though this is evident only after the bootstrap analysis. For

a random sample of 22 of the 88 students, the standard interval agreed less well

with the BCa interval, B = 4000 bootstrap replications.

All 88 Students Random 22 Students
BCa [.537, .691] (R/L=.88) [.550,.825] (R/L=.75)
Standard [.543, .695] [.574,.847]
MLE .619 L711
(zo,a,GB) (-.095,.0194,.046) (-.084,.0327,.083)

Table 5. Central 90% approximate confidence intervals for the proportion
of total variability due to the first principal component; test score data
from Mardia, Kent, and Bibby (1979). The standard intervals are based on
the bootstrap estimate of standard error.
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Example 3: The mean. Suppose F 1is a distribution on the real line, and
8 = t(F) equals the expectation EFX‘ The empirical influence function

Ui = (xi—x) , so {6.2) gives

-3 ~
L(x;-x) 1 M3

[zcxi-i)2]3/2  evm ﬁg/z e/

a-= %— (6.3)

Here ﬁh = Z(xi-i)h/n , the hth sample central moment, and ? = ﬁs/ﬁg/z , the
sample skewness. It turns out also that Zq = ?/6/5 in this case, by standard

L
Edgeworth arguments. Both a and z, are typically of order n °.

Because the sample mean is such a simple statistic, we can use Edgeworth

methods to get asymptotic expressions for the a-level endpoint of the BCa interval:

~ 2
Opc o] = X + G{Z(G) R (Zz(a) +1) + 0 (n-l)} (6.4)
a 6vn P

~ ~ 1/
o= (uz/n)z. This compares with

2 e 5@, ¥ @7 -1

eBC [a]2 x + o{z + -1 (z +1) +0_ ()} , (6.5)
6vn P

for the BC interval (2.3), so the BC, intervals are shifted approximately

(a)2

(y/6/M) 2 further right.

Johnson (1978) suggested modifying the usual t statistic T = (i-e)/S

to Ty =T+ (?/6/5)(2T2+1) , and then considering .TJ to have a standard t

distribution, in order to obtain confidence intervals for 6==EfX. Section 10

-1

of Efron (1981) shows that this is much like using the bootstrap distribution of
% o ~k %
T* = (x -x)/o  (rather than of x -x) as a pivotal quantity. Interestingly

enough, the Edgeworth expansion of 6 [a] , the o endpoint of Johnson's inter-

val, coincides with (6.4), The BCa method makes a 't correction'' in the case
of 6 = EX, but it is not the familiar student's t correction, which operates
at third order in (1.2), but rather a second-order correction, coming from the cor-

- ~ . . .
relation between x and ¢ in non-normal vponpulations. See Remark D, Section 10.
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The author conjectures that the nonparametric BCa intervals will be second-
order correct for any parameter 6. There is no proof of this, a major difficulty
being the definition of second-order correctness in the nonparametric situation.
Whether or not it is true, small-sample nonparametric confidence intervals are
far from well understood, and should be interpreted with some caution:

Example 4: The variance. Suppose X is the real line, and © = Var X ,

F
the variance. Line 5 of Table 2 shows the result of applying the nonparametric
BCa method to data sets X1y Xp, oeey Xop which were actually i.i.d. samples

from a N(0,1) distribution. The number .640 for example is the average of

eBC [.OS]/é over 40 such data sets, B = 4000 bootstrap replications per

dat: set. The upper limit 1.68 § is noticably small, as pointed out by Schenker
(1983). The reason is simple: the nonparametric bootstrap distribution of 8"

has a short upper tail; compared to the parametric bootstrap distribution which

is a scaled ng random variable. The results of Beran [1984], Bickel and
Friedman [1981], and Singh (1981) show that the nonparametric bootstrap distribu-
tion is highly accurate asymptotically, but of course that isn't a guarantee of

good small-sample behavior. Bootstrapping from a smoothed version of F , as in

Section 5.3 of Efron (1982) alleviates the problem in this particular example.

7. Geometry of the Nonparametric Case.

Formula (6.2), which allows us to apply the BCa method nonparametrically,
is based on a simple heuristic argument: instead of the actual sample-space X
of the data points x, , consider only distribution F supported on
X = {xl,xz,...,xn} , the observed data set. This is an n-category multinomial
family, to which we can apply the results of Section 5. Because the multinomial

is an exponential family, Lemma 3 directly gives (6.2).
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We will now examine this argument more carefully, with the help of a simple
geometric representation. See Section 11 of Efron (1981) for further discussion
of this approach to nonparametric confidence intervals.

A typical distribution supported on X is
F(y) i mass w, On X, . (7.1)

where w = (wl,wz,...,wn) can be any vector in the simplex Sn='{w:w>0, Z?wi= 1}.

The parameter 6 = t(F) 1is defined on Sn by 6(w) = t(F(w)). The central point

of the simplex,

YO =Z= (1/n,1/n,...,1/n) , (7.2)

S|t

corresponds to F(w®) F , the usual empirical distribution ; 6(w°) =6 = t(F) ,

the nonparametric MLE of 6. The curved surface
= 8} (7.3)

comprises those distributions F(w) having 6(w) = §. The vector Ui is ortho-

gonal to Cé at wO , as shown in Figure 1, which follows from definition (6.1)

of the empirical influence function. (U is essentially the gradient of ©(w) at
w0 , see Efron (1982), Section 6.3.)

With w unknown, but X = {xl,...,xn} considered fixed, we can imagine

setting a confidence interval for 6(w) on the basis of a hypothetical sample

* * * 313
Xis Xgs cees Xp 1fd F(w). A sufficient statistic is the vector of proportions
*
P, = #{xj=xi}/n , say P = (PI,PZ,...,PH) , with distribution
pwz Multn(n,w)/n T (w e Sn) : (7.4)

The notation here indicates n draws from an n-category multinomial; having

probability Wi for category n. We suppose that we have observed P = yo in
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*

*
(7.4), i.e. that the hypothetical sample Xy +oey X equals the actual sample

X X

10t Xpe
Distributions (7.4) form an n-parameter exponential family (5.4), with y = P,
n. o7
n; = log(nwi)+c , and ¢(m) = log(2¥ e 1/n). Here c¢ can be any constant, since
all vectors n + cl correspond to the same probability vector w , namely

Ny n;
- 1,¢N J
w, = e /Z1 e ”.

Figure 1. All probability distributions supported on {xl,xz,..;,xn} are repre-
sented as Ehe simplex Sn. The central point yo corresponds to the empirical dis-
tribution F. The curves indicate level surfaces of constant value of the parameter
8. In pirticular C§ comprises those probabilityAdistributions having 6 equal to
6(y0) = §, the MLE. The least favorable family F passes through yo in the direc-

tion U, orthogonal to Cé'
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If one accepts the reduction of the original nonparametric problem to (7.4),

with observed value P = w®

~

, then it is easy to carry through the least favorable

family calculations(5.1)-(5.2): (i) ﬁ = 9 s (ii) ﬁ = U ; (iii) %T is the member
of (7.4) corresponding to n+ty = U , namely
N TU. TU.
P’ ~ Mult(n,w )/n wi=e /T e ) (7.5)

(iv) finally, formula (6.2) follows directly from Lemma 3, by differentiating
~ TU,
Y(t) = log(Z?e J/n) (and remembering that ZUi = 0.).
Only step (ii) is not immediate, but it is a straightforward consequence of

definition (5.1) and standard properties of the multinomial. We have already noted

that U is orthogonal to C@ , so U 1is proportional to 7 in (5.1). However
Too1n h ¥

Bn= I - ——, which has pseudo-inverse I. Thus i is proportional to U.

~ ~ ~ ~ -~
-~

Since (5.5), (5.6) produce the same value of a if ﬁ is multiplied by any con-
stant, this effectively gives ﬁ = U,

An interesting case which provides some support for the nonparametric BC,

method is that where the sample space is finite to begin with, say X = {1,2,...,L}.
A typical distribution on X is f = (f;,...,f;) , where f, = Prob{xi=2}. The
observed sample proportions £ = (%1’%2""’%L)’ %2 = #{xi=2}/n , are sufficient,

with distribution £ -~ MultL(n,f)/n. This is an L-parameter exponential family,
so the theory of Section 5 applies. It turns out that Lemma 3 agrees with formula

(6.2) in this case. Nonparametric BCa intervals are the ssame as parametric BCa

intervals when X is finite. See remarks G and H of Efron (1979), for the first-

order bootstrap asymptotics of finite sample spaces.
Family (7.4) was used in Section 11 of Efron (1981) to motivate a method

called nonparametric tilting, a nonparametric analogue of the standard hypothesis-

testing approach to confidence interval construction. The one-parameter tilting
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family, (11.12) of Efron (1981), is closely related to the least favorable family

~

F in Figure 1. Table 5 of Efron (1981) considers samples of size n = 15 for

e (X*1) , X > -1,

the one-sided exponential density f(x) = Central 90% tilting

intervals for 6 = EFX were constructed for each of ten such samples, averaging
[-.34,.50]. The corresponding nonparametric BCa intervals averaged [-.34,.52],
and were quite similar to the tilting intervals on a sample-by-sample comparison.
The nonparametric BCa method is computationally simpler than nonparametric tilt-
ing, and seems likely to give similar results in most problems.

We end this section with a useful approximation formula for the bias-correc-

tion constant Zy s developed jointly with Timothy Hesterberg. In addition to

(6.1) we need the second order empirical influence function

t((l-zA)§+Asi+A5j) - t((1-0)F+A8,) - t((l-A)§+A5j)-+t(§)

V.. = lim (7.6)
U a0 A?
Define 1z, = (1/6)22U§/(Z2U§ 3/2  (the right side of (6.2)) and
U'vu
22 = |y - v v /aallully -
lHull
where V is the n X n matrix (Vij).
Lemma 4. The bias-correction constant zq approximately equals
-1 .
o {2®(z01)®(202)} . (7.9)
For the law school data, Example 1, Zo1 = -.0817 and Zgp = -.0067 , giving
zg = -.0869 from (7.8), compared to 1z, = -.0927 + .0039 from B = 100,000

bootstrap replications.

The term =z relates to skewness in F while 242 is a geometrical term

01
arising from the curvature of C@ at w°. It is analogous to formula (Al5) of

Efron (1984). Lemma 4 will not be proved here, but is referred to in Section 8.
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8. Bootstrap Sample Sizes.

How many bootstrap replications need we take? So far we have pretended that
B = @ , but if Monte Carlo methods are necessary to obtain the bootstrap distribu-
tion (2.1), then B must be finite, usually the smaller the better. This section
gives rough estimates of how small B may be taken in practice. The results are
presented without proof, all being standard exercises in error estimation, see for

instance Chapter 10 of Kendall and Stuart (1958).

~

First consider the easy problem of estimating the standard error of 60 via
the bootstrap. The bootstrap estimate based on B replications,

~ Ak A%k 1.
og = [zg=1(eb-e.)2/(3-1)]2 , has conditional coefficient of variation (standard

deviation divided by expectation)

~

~ . 8+2.%
CV{UBIZ} = ['Zi'] s (8.1)

where & 1is the kurtosis of the bootstrap distribution G. The notation indicates

that the observed data y is fixed in this calculation. As B =+ «, then

-~

(8.1) ~ 0 and &5, + o, the ideal bootstrap estimate of standard error.

B
Of course O itself will usually not estimate the true standard error

o = SDe{é} perfectly. Let CV(G) be the coefficient of variation of G, un-

conditional now, averaging over the possible realizations of y. [For example if

-~

A - i1 . 1 ,
n=20,68=%,x 1id y(0,1) , then CV(8) * (1/40)% = .16.] The unconditional
CV of GB is then approximated by

842
AL o 2.an L E8%2
cv(Ey = (Vi) + BB (8.2)

Table 6 displays WG for various choices of B and CV(8) , assuming

g)

ES = 0. For values of CV(S) > .10 , typical in practice, there is little im-

provement past B = 100. In fact B as small as 25 gives reasonable results.

30



B -

25 50 100 200 o

cV(&) .25 .29 .27 .26 .25 .25
¥y .20 24 .22 .21 21 .20
.15 .21 .18 .17 .16 .15

.10 .17 .14 .12 .11 .10

.05 .15 .11 .09 .07 .05

0 .14 .10 .07 .05 0

Table 6, Coefficient of variation of GB, the bootstrap

estimate of standard error, as a function of B, the number
bootstrap replications, and CV(c), the limiting CV as B+,
Based on (8.2). assuming E§ = 0.

Now we return to bootstrap confidence intervals. Let OB[a] be the a-end-
point of either the BC or BCa interval obtained from B bootstrap replica-
tions (either parametrically or nonparametrically). Let 6[a] = liz SB[a]. The
following formula for the conditional CV of GB[a]—O[a] assumes Shat the bootstrap

cdf G is roughly normal, and that Zg and a are known, for example from

(7.8) and (5.3) or (6.2):

L
‘ . 1 a(l-a) \*
cv{e,la] - 0[ally} = (8.3)
B ~ B2|Z(0")| ¢(Z(G'))2
_Lzz
$(z) = e 2° /V/2m.
1
Here is a brief tabulation of (8.3) x B* ,
o : .75 .90 .95 .975
- (8.4)
(8.3)xB™: 4,08 1.78 1,65 1.86

1
If B = 1000 for instance, then CV{8,[.951-6[.95]|y} = 1.65/1000° = .052. Re-

ducing B to 250 increases the conditional CV to .104. This last figure will
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often be too big. The whole purpose of developing a theory better than (1.1) is
to capture second order effects. As our examples have indicated, these become in-
teresting when the asymmetry ratio R/L is larger than say 1.25 , or smaller than
.75. In such borderline situations, an extra 10% error in each tail due to
inadequate bootstrap sampling is unacceptable.

If the bias-correction constant Zq is estimated by Monte Carlo directly

from (2.2), rather than from (7.8), then

1
72

cvie, [al-6[al|y} = o— [+ . 20w »2d-) (8.5)
b B O h0? 600y 02 ®)?

for o > .50. This gives larger CVs than (8.3},

o : .75 .90 .95 .975

T (8.6)

(8.5)xB%: 9.23 3.87 3.07 2.94
Comparing (8.6) with (8.4) shows that we need B to be about four times larger
to get the same CV if 4 is estimated rather than calculated. Formula (7.8) can
be very helpful!
Both (8.3) and (8.5) assume that the bootstrap cdf 8 is estimated by
straightforward Monte Carlo sampling, as in (2.1). Professor M. V. Johns (per-

sonal communication) has developed importance sampling methods which greatly

accelerate the estimation of G in some situations.

9. One-Parameter Families.

~

We return to the simple situation 6 ~ fe , where there are no nuisance pa-
rameters, and where we want a confidence interval for the real-valued parameter
6 based on a real-valued summary statistic 6. This section gives a more exten-
sive discussion of the acceleration constant a , which has played a basic role in

our considerations. Three familiar types of one-parameter families will be in-

vestigated: exponential families, translation families, and transformation families.
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Efron (1982A) considers the following question: for a given family 6. fe ,

do there exist mappings $ = g(é), ¢ = h(6) such that $ = ¢+0¢ q(Z), Z .~ N(0,1) ,

as in (3.3)? This last form, 3 General Scaled Transformation Family, generalizes

~

the concept of the ideal normalization, where ¢ = ¢+Z.

The question above is answered in terms of the diagnostic function

D(z,08) = [¢(O)/¢(z)][ﬁe(ée(a))/Fe(ue)]. Here ¢(z) 1is the standard normal density
2
-5 -z2°/2 5 _ A L. _ 2 . _ .
(2m) “ e ; Fy is the cdf Fe(s) = Probe{9§§}, FG(S) = 5@'Fe(s)’ o= &(z);
ééa) is the 100-a percentile of 6 given 6, ééa) = Fél(a) ; and g is the
median of 6 given 6, ug = 66('5) = ﬁél(.S). It is shown that the form of %

and q(z) in (3.3) can be inferred from D(z,8) , the main advantage being that
D(z,0) 1is computed without knowledge of the normalizing transformations g, h.
The connection of transformation family theory with the acceleration constant

a 1is the following: define

- 9
€g = —E-D(z,e) . (9.1)
z=0

If q(z) in (3.3) is symetrically distributed about zero, a situation called a

Symmetric Scaled Transformation Family (SSTF), then

do
ey = 74? (9.2)

see (4.11) of Efron (1982A). A more complicated relationship holds for the GSTF
case.

Notice that (9.2) is quite close to our original description of "a'" as the
rate of change of standard deviation on the normalized scale. As a matter of fact,

we can transform (2.4), (2.5) into an SSTF by considering the statistic

~ ~ ZO A~ ZO A
b= 0% T 05 T O Ty (ad) (©-3)

instead of ¢ itself, Then it is easy to show that
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a

l—az0

o =0+ (e (g, = ) (9.4)

an SSTF with o

® = 1+€0¢, 8¢ = €, for all ¢. [The quantity €, has the same

0
definition in (9.4) as in (3.6).]

Example. For 6 ~ exfg/lg as in Table 2, €g = .1090 for all 6 (using
(9.6) below). Also zj = ¢ Prob{xig<19} = .1082. The relationship
a = so/(1+eoz0) obtained by solving for a in (9.4) gives a = .1077 , the value
used in Table 2.

We show below that under reasonable asymptotic conditions,

SKEWg (%) .. (9.5)
6 8
where €, = 2 D(z,8)|._, as in (9.1). This last definition of € can be eval-
0 9z z=0 ]

uated for any family 6 -~ fe , assuming only that the necessary derivatives exist.
The point here is that SKEWe(Qe)/é always approximates €g (9.1), and in SSTF

families €g has the acceleration interpretation (9.2).

Now to show (9.5). It is possible to reexpress (9.1) as

e IS (9.6)

€g = x
Mg fe(ue)

where Hg = é%—ue , the rate of change of the median g with respect to 6.

For notational convenience suppose that 6 = 0, Instead of 6 , consider the
statistic X = io(g)/io , where i0 equals the Fisher information EOQO(G)Z.

The parameter €g4 is invariant under one-to-one changes of statistic, so we can

evaiuate the right side of (9.6) in terms of X, €g = —¢(O)ig(ug)/ﬁéfg(ug).

1
-4

For 6 = 0, X has expectation EOX = 0 and standard deviation og =1,

also ié(O) 0 , since X = 0 implies 6 = 0 is a solution of the MLE equation.
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Assuming the usual asymptotic convergence properties, as in (4.4), (4.6), we have
. . . DX s X Xy XX - B
the following approximations: Mg = 1; 0 = Yolo /6 fo(uo) = ¢(0)10,
Z%(ué) = —/TE Y§/6. These are derived from standard Edgeworth and Taylor series
arguments, which won't be presented here. Taken together they give
ey = sxﬁwo(zﬁ)/s = SKEW,(%,)/6 , which is (9.5). The quantity SKEN,(%.)/6 is
-1
O(n %) , and the error of approximation in (9.5) is quite small,
SKEW, (L)
0470 -1
€ = — % [1+0(n 7)1 . (9.7)
Approximation (9.5) is particularly easy to understand in one-parameter ex-
ponential families. Suppose Xys X5, ---5 X are i.i.d. observations from such
a family, with sufficient statistic y = x having density foly) = en[ey-w(e)]fo(y).
In this case formula (9.6) becomes
Y Y | Y

T Y Y. Y Y ’
uefe(ue) Og

(9.8)

Y Y _ ) Y .Y

where Xe = Ee{y}, Mg = medlane{y}, Mg = aue/ae , etc. The term

Y / - ) . -
[Og-u)/op] = Yi/611+0(m™ 1)1 , while g6 (0)/ligfq(ug) = 1 + 0(n™") , both of the
calculations being quite straightforward. Thus €qg = Yg/6[1+0(n-1)]. Since
25(y) = nly-Ag] , we have SKEwe(ie(y)) = SKEW, (y) = yg , verifying (9.5) for
one-parameter exponential families.

. 1
. - _ B 2 -
Example. If Y ~ Poisson(8), 6 = 15 , then SKEWe(Qe)/G = 1/(6+67%) = .0430.

For the continued version of the Poisson family used in Efron (1982A),
0 - -
T D(z,6)|z=0 = .0425 for 6 = 15.

Translation Families. Suppose we observe a translation family g = g+W as

in (2.9). Express W as a function q(Z) of Z ~ N(0,1) , for simplicity
assuming q(0) = 0 and q'(0) =1 as in Efron (1982A). Then 2 = ¢'1Prob{;<;}= 0.

In this case it looks like methods based on the percentiles of the boostrap
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distribution must give wrong answers, since if W is long-tailed to the right
then the correct interval (2.10) is long-tailed to the left, and vice-versa. How-
ever the BCa method produces at least roughly correct intervals, as we saw in
the proof of Lemma 1.

What happens is the following: for any constant A the transformation

_ At . A 2 haliy
gy(t) = (e "-1)/A gives ¢ = gx(2), ¢ = g,(t) and Z, =g, (W) satisfying

6 = ¢+o$-ZA (0$ = 1+A9) . (9.9)
The Taylor series for W = q(Z) begins W = Z+(Yw/6)Z2 +... Wwhere
Yy = SKEW(W). Then Z, = Z+(Yw/6)222+(A/2)22 .
The choice A =a = -YW/S results in Za = Z+cZ3 +... , the quadratic term

cancelling out; Z, is then approximately normal, so (9.9) is approximately

situation (2.4), (2.5), with zy = 0, a = -Yw/S. But we know that the BCa inter-

vals are correct if we can transform to situation (2.4), (2.5). An application of

Lemma 2, assuming Za ~ N(0,1} , shows that a = -Yw/S = SKEW(QC(C))/6 for the
translation family E = z+W , reverifying (3.1). [If Za ~ N(0,1) in (9.9) then

a must equal € , the constant value of ¢ (9.1), for the translation family

C b
z = r+W ; one can show directly that e = —YW/S for such a family.]
In the example 6 ~ exig/lg , the two constants Zg and a are nearly equal.

This is no fluke:

Lemma 5. If 6 is the MLE of 6 in a one-parameter problem having standard

asymptotic properties (4.4) or (4.6), then zj =a,
by R SKEWg (L) 1
zg = o} Probe{e<e} = 3 {1 +0(n )] . (9.10)

Proof: We follow the notation and results of DiCiccio (1984): thus kl’kZ’kS

equal the first three c mulants of ie under ©; kOl’ k02, k03 the first three
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cumulants of 28; k001 , the first cumulant of le ; and k11 = cove(ke,le). (So

k the Fisher information.) All cumulants are assumed to be O(n). Then

2~ 1g >

the relative bias of 6 is

E (8-8) knns - 2k
1 -
b = 0 . _ 00 o 3 Ao 3/2) ; (9.11)
Vare(e) 6k2
while 5 has skewness
k -k
001 ™3 -3/2
Ye=—3/i——-—+0(n / ) . (9.12)
k2

1
Both b and Y4 are om™ %.

Standard Edgeworth theory now gives

Probg {6<6} = #(-b) - Y o) (b7-1) + o2
(2K ) + (koo -ky)
5+ ¢(0) —_3 001 i 0017K8) | o n-3/2)
6k
L5 8(0) 2+ oD
6kg;2
Since SKEW.(%.) = k,/k>/? | this verifies (9.10) 0
oRg) = ka/ky s :10).

In multiparameter problems it is no longer true that z a. The geometry

0

of the level surface Cé adds another term to Zy » 3S in (7.8).

10. Remarks.

Remark A. Suppose that instead of (2.4), (2.5) we have c¢ = 00(1+A¢),
00# 1. The transformations $(°) = $/oo, ¢(0) = ¢/00 , give $(O)= ¢(0)+0(%%$Z—zo),
where 0(0) = 1+a¢(0) and a = AC so we are back on form (2.4), (2.5)?

¢(0) 0

Notice that the derivative d(c¢/oo)/d(¢/00) = a , as in (3.10). In a similar
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way we can transform (2.4), (2.5) so that 0¢ = 1 at any point ¢0 ; the result-
0
ing value of a satisfies (3.10).
Remark B. Instead of using ¢ to estimate ¢ in (2.4), (2.5) we might

change to the estimator ¢(c) = ¢-co$ , for some constant c¢. It turns out that

we are still in situation (2.4), (2.5: ¢(C) = ¢+0(C)(Z-zéc)) where

)
oi =1+ al@-0{  0f = c/1-ae)) (10.1)
and a(c) = a(l-ac), zéc) = zO+¢8c). The choice ¢ = -zo/(l-azo) gives zéc)= 0,

as in (9.3), (9.4). The choice c¢ = a gives approximately the MLE of ¢. In-

terestingly enough, the BCa interval for ¢ based on ¢(c) is the same for all

choices of c. Minor changes in the choice of estimator seem to have little effect

on the BCa intervals in general, though for computational reasons it is best not
to use very biased estimators, having large values of zy-
Remark C. Section 5 uses the MLE 6 = t(ﬁ). This has one major advantage

the BCa interval for 6 , based on 6 , stays the same under all multivariate

transformations (5.9). Stein (1956) notes that the least favorable direction ﬂ

~

= Dﬁ , where D 1is the matrix with

1T

transforms in the obvious way under (5.9),
ijth element aﬁj/ani‘n=ﬁ , from which it is easy to check that formula (5.3) is
invariant: the constar:t~ a 1is assigned the same value no matter what transfor-

mations (5.9) are applied. The bootstrap distribution 8 is similarly invariant,
as shown in Efron (1984), and so is 24 This implies that the BCa intervals

are invariant under transformations (5.9).

Remark D. The multiparametric theory of Section 5 gives an interesting

result when applied to location-scale families, y = (x,s), n = (6,0) , and the
family of densities fn(y) has the form
_ 1 x-0 s '
fe’o(x,s) = 0_2 fOl(_O'—’ E) s (10'2)

fOI(x,s) being a known bivariate density function.
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Suppose we wish to set a confidence interval for the location parameter 8
on the basis of its MLE é. Parametric bootstrap intervals are based on the dis-
@,G(X*’s*)' The BC interval essentially
amounts to pretending that ¢ is known (and equal to 8) in (10.2), and that

tribution of §* when sampling from f

we have only a location problem to deal with, rather than a location-scale problem.
In contrast, the BCa interval takes account of the fact that ¢ 1is unknown.

In particular the least favorable direction g , plotted in the (6,0) plane,

is not parallel to the 6 axis. It has a component in the o direction, whose
magnitude is determined by the correlation between x and s. This means that
Stein's least favorable family (5.2) does not treat o as a constant.

Table 7 relates to the following choice of f01(x,s):

. 30 |x ~ (1 2 /14)% 10.3
~ 30 - » S X~( +x)(Xl4 ) ) ( )

the two x2 variates being independent. This is a computationally more tractable
version of the problem discussed in Tables 4 and 5 of Efron (1981). Approximate

central 90% intervals are given for 6 , having osberved (x,s) = (0,1). For any
other observed (x,s) the intervals transform in the obvious way, exs[a]=x+3601[a].
Line 3 shows the exact interval, based on inverting the distribution of the pivo-

tal quantity T = (6-6)/0 for situations (10.2). (10.3).

1. BC interval: [-.336,.501] (R/L) = 1.49
2. BC, interval: [-.303,.603] (R/L) = 1.99
3. T interval: [-.336,.670] (R/L) = 1.99

Table 7. Central 90% intervals for 6, having observed
x,s) = (0,1) from the location-scale family (10.2), (10.3),
Line 3 is based on the actual distribution of the p1vota1

quantity T = (9 6)/0 The observed MLE values are 6 =0,
G = .966.
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In this case the BCa method makes a large ''second-order t correction'', as
in Example 3 of Section 6, shifting the BC interval a considerable ways right-
ward, and acheiving the correct R/L ratio, The length of the BCa interval is
90% the length of the T interval. This deficiency is a third-order effect, in
the spirit of the familiar student's t correction. It arises from the varia-
bility of G as an estimate of o , rather than the second-order effect due to
the correlation of G with g.

Remark E. Section 2 says that the family vy ~ 6xig can be mapped into
form (2.4), (2.5). What are the appropriate mappings? It simplifies the problem
to consider the equivalent family 6 ~ e(xig/co) where ¢y = 18.3337=1nedian(xfg).
Then ¢ = gl(é)’ ;=g (0), W= gl(X%Q/CO) , give a translation family (2.9), with

median(W) = 0 , for any mapping gl(t) = (log t)/cl. Choosing = ,3292

c

1
1

results in W = q(Z) having q(0) = 0, q (0) = 1 , as in Section 9's discussion

of translation families.

Section 9 suggests normalizing a translation family by gA(t) = (eA

t-/a
a good choice for A being the constant €g > (9.1), which equals .1090 for

all 6 in the family 6 -~ e(xig/co). The combined transformation

g(t) = gA(gl(t)) is g(t) = 9.1746[t'3311 - 1]. The transformed family $= g(8),
¢ = g(8) 1is of form (2.4), (2.5),
2  .3311
- X19
¢ = ¢ + (1+.1090¢)Z Z = 9.1746 (?—) -1 . (10.4)
0 .

Numerical calculations verify that Z as defined in (10.4) is very close to a
standard normal variate. In fact we have automatically recovered, nearly, the
Wilson-Hilferty cube root transformation, Johnson and Kotz (1970). Using (10.4),
it is not difficult to show that g(t) as defined above gives approximately
(2.4), (2.5) when applied to the family 6 ~ 6(xi9/19) considered in Section 2,

with constants zO and a as stated.
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11. Proof of Theorem 1.

A monotonic ﬁapping ¢ = g(8), ¢ = g(®) transforms the exact confidence in-

terval in the obvious way, ¢Ex[a] = g(BEX[a]) , and likewise for the BCa inter-
val. By using such a mapping we can always make ¢ = 0 and the distribution of

~

¢ given ¢ = 0 perfectly normal. Because of (4.6), which says that the dis-

~ i
tributions of 6 are approaching normality at the usual O(n *) rate, the norma-
lizing transformation g is asymptotically linear, g(8) = 6+c262+c363 ...,

e IR |
c, = o(n %), cg = Oo(n 7).

We will assume that the problem is already in the form 6 = 0 , with the cdf

of 6 for 6 = 0 normal, say

Gy ~ N(-2g,1) - (11.1)

Here 1z, = ¢—1P0{6<0} must be included because it is not affected by any monoto-

0

nic transformations z

. L
0= Ye/6 is 0(n" %) by (4.6). A simple exercise using

the mean value theorem of calculus shows that if (4.7) is true in the transformed
problem (11.1), then it is true in the original problem.

~

Assuming (4.6), 6 = 0 , and (11.1) we will show that the exact interval has

endpoint
{a) .
Z, + 2 g
o lo] = A R PO (11.2)
X co@,h 0 @ 20
1—002 + BO+—6- (z -1)
compared to
. zg * z(a)
B,~ 0 = (11.3)
BC . (@)
a 1-00(zo+z )
for the BCa interval. In this section the symbol "=" indicates accuracy through
O(n'l) , with errors O(n_s/z). Then
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B~ [al-6-_ [a] : =
BC_ ‘" Ex . .Y o 3
- 2 oy [alGyzg Byt g P00 - @), L

%

which is O(n-l) as claimed in Theorenm 1.

The proof of (11.2) begins by noting that (11.1) implies BO = -24, Oy = 1,
Yo = o, 60 = 0. Then (4.6) gives
A_ = 2 3 3 = 52
Eee = 6+Be = (1+80)6-zo , Oy * 1+006+006 /2,
(11.5)
Yo £ YoP > . 850,
for 6 = 0(1). The 100-a percentile of O given 8 is
3(0) @ , o (@2
bg ~ = (6+Bg) + oe{z s (z -1}
(11.6)

. - g Y0
[(Q+Bg)0-2y] + (15500 + = 0211z + - @2y,

using a Cornish-Fisher expansion and (11.5). However the 6 that has 6éa) =0
is by definition eEx[l-a]. Solving the lower expression in (11.6) for 0 , and
substituting 1l-a for o , gives (11.2).

The proof of (11.3) follows from (2.6), (2.7), and (11.1), (which says that
8 ~ N(—zo,l)) if we can establish that a = &O(1+O(n‘1)). In fact we show below

that

eg = 0y(1+0(n1)) for © = oY (11.7)

which combines with a = g,/(1+€4z4) = eo(1+0(n'1)) to give the required result.

Formula (11.7) follows from (11.5), which gives the simpler expressions

g 2 08-z,, g 2 1+006, Yo = 0, Ge =0 (11.8)

0

1/ A
for 6 = 0(n"2). The cdf of & given 6 is calculated to be
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6. (8) = 6(z,) 2o - Yo 2 1) 11.9
6 o) %0 -5 (g7 (11.9)

zg = (e—e-se)/oe, 26 = é%—ze. Straightforward expansions give

- _(a) | 2 v (a)2
1+ 0.2 + B+ (v,/6)(z -1)
Dz, = 0 0 0 , (11.10)
1 + BO - Y0/6

. 9 .o s o P
from which €y = = D(z,e)lz=0 2 0o/ (1+B,-vo/6) , verifying (11.7), (11.3), and
the main result (11.4).
The proof that eBC [a] also matches the Cox-McCullogh formula (4.8) is si-
a
milar to the proof of Theorem 1, and won't be presented here. The main step is an

expression for eBC o] involving Lemma 5,
a .

eBCa[a] GO (ﬁs/sﬁg/z){z(“)2+1} + (ﬁs/sﬁg/z)z{ZZ(a)+z(“)3} . (11.11)
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